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B-Sheets are ubiquitous in protein structutéshas also been
found that several diseases, such as Alzheimer’s disease and mad-
cow disease, are associated with the formatigfi-amyloid fibrils
by 3-amyloid peptides.Currently, there is an intense research effort
to understand the stability and dynamic featureg-sheet forma- : J261BA 26534 /
tion:2 One important question to answer is whether the formation S067A )
of 3-sheets is cooperativeSeveral recent experiments using de-
signed short peptides for the study of cooperativityisheet for-
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mation all indicated a cooperativity in the perpendicular direction. 0.033A
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Figure 1. Calculated dimeric structures of the parallel (top) and antiparallel
(bottom) S-sheet models witm = 2, m = 3.
pB-Sheets are featured with the formation of regular hydrogen-

bond (H-bond) networks (above). It is known that cooperative  The repeating units were then used to construct parallel and
interactions are important for the stability of many H-bonded sys- antiparallelg-sheets withif = 2, m = 0-7), (n = 3—6, m = 1),
tems?®’ Recent experimental and theoretical studies of amide clus- and fi = 3-6, m = 2). The energies of these structures were
ters indicate that there is strong cooperativity in the formation of «5iculated with the B3LYP/6-31G* meth&dn a vacuum without
one-dimensional H-bond chaifi8it has been proposed that there  geometric optimization, which should give reasonably good relative
is an important resonance interaction in a H-bond chain just like pinging energies of the repeating uriits.
that in polyenes and that this resonance interaction is essential to Figure 2a shows the calculated individual H-bond energies in
the cooper_ativity of H-bonds in these_ systeim¥.Here, we report the parallel directionr(= 2, m = 0—7). In the case of parallel
our preliminary results on a theoretical study/bsheet models, g heets; the energy of each H-bond is nearly constant. For the
which suggest that the formation of H-bond networkgisheets ,hiinaralielg-sheet, there are two situations. The second, fourth,
may _not have significant cooperativity in terms of enthalpy con- sixth, and eighth H-bonds correspond to the formation of the large
tr'bUt'On'__ . . . . H-bonded rings(R) and have higher stabilizations than the first
We utilized a simple rgpeatlng unit approach methOQ’.Wh'Ch has H-bond. The third, fifth, and seventh H-bonds correspond to the
been successiully applied to the study of cooperativity of the formation of small H-bonded rings$SR) and cause small destabi-

b 11 ! A ) . '
(21 ?T?llxé \t/(\)/%g::nofetm;z,ﬁ: t?]?\i(tjslr?:rrtcr)\fea z;giztllgién:rifljrallel lizations. In the formation dfRs, the extra stabilization is in accord
,m=3) P 9 P P with the G—H- - -O=C H-bonds proposed by Dixon et ®lThe

f-sheets. Figure 1 shows the optimized structures by the HF/6- opposite feature in the formation &Rs can be attributed to the

N . .
31G* method along with important geometrical parametéf3. secondary electrostatic repulsions between two H-bonds (short O/O

These structur_es were co_nstralned to be plapar () = 180), and H/H distances) that have been discussed by Jorgenset et al.
with every glycine residue in the same geometry. Thus, each strand . o . .
gain, cooperativity is not found in the formation of b@iRs and

had three repeating glycine units. The parallel sheet had quite weal(a‘ . . .
H-bonds with the adjacent O- - -H distances of 2.65 and 2.62 A, LRs. Therefore, it can be concluded that the repeating H-bonds in

respectively. The antiparallel sheet had a much shorter O- - -H the parallel direc_tion_ in both the parallel and e_mtiparqﬂeiheets
distance of 2.15 A, which was still longer than those in optimized arg not cooperative in ter_m_s of enthalpy contribution. It should be
amide clustera! Similar geometries were obtained for the dimers PCinted out that cooperativity could still be caused by the entropy

of Ac—(Gly),~NH, with full geometric optimization (Figure S2  ©ffect and side-chain/side-chain interactiohs. _
of SI), in support of the repeating unit approach. The calculated binding energies for individual strands in the

perpendicular direction are plotted in (b) and (c) of Figure 2 for
* Author for correspondence. E-mail: chydwu@ust.hk. parallel and antiparallgs-sheet models, respectively. When=
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Figure 2. (a) Plot of calculated binding energy increment of thié pair of residues in the parallel directios:s = Egm) — Egm-1), whereEg(m) is the total
binding energy between two strands= 2) with mresidues. In (b) and (c), the solid curves are plots of the calculated binding energy incremenhtby the
strand in the parallel and antiparalf@ksheet models, respectively;y = Egn — Egn-1), WhereEsg(y is the total binding energy with §-strands. The dashed
lines represent no cooperativity, and the dotted curves are calculated binding eagegids, based on the assumption that cooperativitiesier 1 and

m = 2 double and triple that for the single H-bond chaim= 0), respectively.

0, that is, in the acetamide H-bond chain, there is a large cooperative (3) (a) Gellman, S. HCurr. Opin. Chem. Biol1998 2, 717. (b) Sun, J. K.;
Doig, A. J.J. Phys. Chem. B200Q 104, 1826 and references therein. (c)

interaction as the binding energy incre_as_es Ymnbacomes larger. Dalal, S.; Balastbramanian, S.; ReganNat. Struct. Biol 1997 4, 548.
To test the effect of geometric optimization on the calculated (Sd) EO\I/vick,J.PS&Ar\]cc. Cgem. R%ggg i% gg;. ((%) Ea%, CS RathothaQa,
H H F H 5 - ., balaram, em. Commu y . olde, S.; Auang, X.
binding energy and cooperatlwlty, the dlmer,.trlmer, tetramer, pent L Link, K.; Koide, A.; Bu, Z. M.. Engelman., D. MNature 200q 403,
amer, and hexamer of formamide in the antiparallel sheet arrange- 456. (g) Lashuel, H. A.; LaBrenz, S. R.; Woo, L.; Serpell, L. C.; Kelly,
ment have been calculated in two different ways with the B3LYP/ @ i W. JAAg‘- aher_”- 33‘2&0‘3' 1BZ_Z| 512%25- 252 366
) " . . L. . . ang, A. S.; Honig, . Mol. Biol. .
6 :_316 method.. (a) full geometrlc pptlmlzatlon and (b) rgpgatlhg (5) (a) Kortemme, T.; Ramirez-Alvarado, M.; SerranoSciencel 998 281,
unit approach with the repeating unit derived from the optimization 253. (b) Schenck, H. L.; Gellman, S. H. Am. Chem. Sod.998 120,
of the tetramer. These two sets of calculations give similar binding 4869. (c) Koepf, E. K.; Petrassi, H. M,; Sudol, M.; Kelly, J. Wrotein

. L - X . Sci. 1999 8, 841. (d) Griffiths-Jones, S. R.; Searle, M. 5.Am. Chem.
energies (see Sl). This means that the repeating unit approach is Soc.ZOO% 122 83%3_

valid. (6) (a) Jeffrey, G. A.; Saenger, W. IHydrogen Bonding in Biological

; Structures Springer-Verlag: Berlin, 1991. (b) Scheiner, Bydrogen
We have also estimated the effect of methanol solvent on the Bonding Oxford University Press: New York, 1997

binding energies of the dimer to hexamer of formamide using the (7) Guo, H.; Sirais, S.; Proynov, E. |.; Salahub, D. RTimeoretical Treatment

self-consistent induced polarization continuum model (SCIPEM). of Hydrogen BondingHadzi, D., Ed.; John Wiley & Sons Ltd: New
The calculated binding energies for the last formamide of the dimer York, 1997; Chapter 3. . .

(8) (a) Ludwig, R.J. Mol. Lig. 200Q 84, 65-75. (b) Ludwig, R.; Reis, O.;
to hexamer are-7.1, —9.2, —9.8, —10.0, and—10.1 kcal/mol, Winter, R.; Weinhold, F.; Farar, T. @. Phys. Chem. B998 102, 9312.

respectively, in the gas phase. They are reducedial, —5.6,

c¢) Ludwig, R.; Weinhold, F.; Farrar, T. Q. Phys. Chem. A997 101,
—5.7,—5.7,—5.7 kcal/mol, respectively, in the methanol solution. "

(
886
(9) (a) Kobko, N.; Paraskevas, L.; delRio, E.; Dannenberg,JJ.Am. Chem.

The calculated cooperativity for binding is large in the gas phase, S0c.2001, 123 4348. (b) Masunov, A.; Dannenberg, JJJPhys. Chem.

it is sianifi i i - B. 200Q 104, 806. (c) Guo, H.; Gresh, N.; Roques, B. P. Salahub, D. R.
bu_t itis S|gn|f|9an_tly reduced in the metquno_l solution. The calcu 3. Phys. Chem. E2000 104 9746, (d) Guio, H.. Salahub. D. Rgew,
lations clearly indicate that the cooperativity is largely due to long- Chem., Int. Ed1998 37, 2985. () Guo, H.; Karplus, Ml. Phys. Chem.
range electrostatic interactions and not due to the resonance effect. 1994 98, 7104.

i i+ (10) (a) Gilli, P.; Bertolas, V.; Ferretti, V.; Gilli, GJ. Am. Chem. S0d.994
If the above cooperativity were due to the resonance effect, it 116, 909. (b) Sharman, G. J.; Searle. MJSAM. Chem. S04998 120

would be additive. That is, the binding cooperativity fstrands 5291.
with m= 1 andm= 2 should double and triple that of the acetamide  (11) Wu, Y.-D.; Zhao, Y.-LJ. Am. Chem. So@001, 123, 5313.

chain fn= 0). as represented by the dotted curves. This is obviously (12) All calculations were performed with: Frisch, M. J.; Trucks, G. W.;
n ). P y y Schlegel, H. B.; Scuseria, G. E.; Robb, M. A,; Cheeseman, J. R.;

not the case. The cooperativity of the binding for= 1 andm = Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J.
2 is much smaller (solid curves) for both the parallel and antiparallel C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M.
.. . . C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci,
[-sheets. Electrostatic interations best explain the above observa- B.: Pomelli, C.- Adamo, C.: Clifford, S.: Ochterski, J.: Petersson, G. A.:
tions. Whenm = 0, the acetamide H-bond chain has all the amide Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.;

Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov,

dipoles_, aligned roughly heac_:l-to-tail. This _aIIO\_Ns strong electros_ta_ltic B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, |.; Gomperts, R.;
attractions among amide dipoles, resulting in large cooperativity. Rl/lartln, kRk. L.:XOé D. JI Kglt%hT'l;l AI-L%hanl\)l, l\é;"AF.; 'aes\g/;, JC.hY.;
. . . anayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson,
Whenm > 1, each H-bonq chain still ha_s I_arge elt_ectrostatlc attrac_— B. G.. Chen, W.. Wong, M. W.. Andres, J. L.; Head-Gordon, M.; Replogle,
tions, but there are repulsive electrostatic interactions between adja- E. S.; Pople, J. AGaussian 98revision A7M; Gaussian, Inc.: Pittsburgh,
cent H-bond chains. As a result, the cooperativity is significantly PA, 1998. ) ) )
d d (13) The repeating unit for the antiparaljgisheet was also obtained by the
reaucea. construction of the rings in SRLR—SR fashion. The geometry is
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